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MOTIVATION

• Matrix decomposition is a linear algebra tool
which has been used to analyze many high-
dimensional data sets in real-world applications

• Graphs can model diverse phenomena, from so-
cial networks to computer architecture

• Is it possible to expand the use of matrix de-
composition into the pure field of graphs, and
thereby open additional possible applications?

GRAPH PRODUCTS

Using two results from linear algebra, we show that
the rank-1 approximation behaves well under the
Cartesian product of graphs. Suppose we have the
graphs G and H with adjacency matrices AG and AH .
We can make use of two facts from linear algebra:

Lemma 1 ([1]). Let λi, 1 ≤ i ≤ n represent the eigen-
values of G and µj , 1 ≤ j ≤ m represent the eigenvalues
of H. Then the eigenvalues of G�H are given by λi+µj .

Lemma 2 ([1]). If ~vi is the eigenvector of AG corre-
sponding to λi and ~wj is the eigenvector of AH corre-
sponding to µj , then ~vi ⊗ ~wj is the eigenvector of AG�H

corresponding to λi + µj .

These lemmas, along with a reforumaltion of the carte-
sian product, yield the following result:

Theorem 1. Let AG, DG, and YG = ZGZ
T
G repre-

sent the adjacency, degree, and signless Laplacian ma-
trices of G and H, respectively. Further, let λi (YG)
and λj (YH) be the eigenvalues of YG and YH with
λ1 (YG) ≥ . . . ≥ λn (YG) and λ1 (YH) ≥ . . . ≥ λn (YH).
Finally, let ~vi (YG) and ~vj (YH) be the eigenvectors cor-
responding to λi (YG) and λi (YH), respectively. Then

• The eigenvectors λi+j (YG�H) are all given by
λi (YG)+λj (YH) for all combinations of 1 ≤ i ≤ n
and 1 ≤ j ≤ m.

• The eigenvector corresponding to λi+j (YG�H),
~vi+j (YG�H), is given by ~vi (YG)⊗ ~vj (YH).

COMPUTATIONAL RESULTS

Graph Dimensions Pseudocode (conditions for Zij = 1)

Path n× n− 1 i = j or i = j + 1

Cycle n× n i = j or i− 1 ≡ j mod n

Star n× n− 1 i = 1 or i = j + 1

Wheel n× 2(n− 1)

[n star

]  0 . . . 0

n− 1 cycle




Complete n× n(n− 1)/2 columns are permutations of
{1, 1, 0, . . . , 0}

Complete
bipartite

n× n2/4 i−n ≡ j mod n or i−1 = (j−1)\n

Prism n× 3
2n


[
n cycle

] [
0

]
I[

0

] [
n cycle

]
I


Tree n× n− 1 j = i− 1 or i = (j + s− 1)\s

Table 1: Summary of classes of graphs for which incidence
matrices were generated

Figure 1: Plots of rank-1 approximation entries for, respec-
tively, a 100-vertex path, a 100-vertex cycle, a 10-vertex star,
and a 7-vertex binary tree
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FUTURE RESEARCH

Both the computational work and theoretical results suggest several directions for future research. In particular:

• How does the rank-1 approximation behave under graph operations other than the Cartesian product?

• How much about a graph can we tell from its rank-1 approximation? There seem to be different graphs
with the same approximation. What about rank r > 1 approximations?

• Can the bounds imposed by the Davis-Kahan Theorem be improved or differently applied?

SIMPLE CLASSES OF GRAPHS

We develop and then prove explicit results for the
rank-1 approximations of several simple classes of
graphs. In each case, the proof begins with the gen-
eral structure of the incidence matrix given in table 1,
then uses matrix manipulation techniques to obtain an
explicit or recursive formula for the determinant, and
finally, uses this to proove the contents of the rank-1
approximation.

• Cycle, Cn: 4 is the largest eigenvalue of ZZT for
a cycle of any size. The rank-1 approximation
consists of ~1.

• Star, Sn−1: n is the largest eigenvalue of ZZT

for a star of any size. The rank-1 approxi-
mation consists of vectors of the form {n −
1, 1, 1, . . . , 1, 1}

• Complete graph, Kn: 2n−2 is the largest eigen-
value of ZZT for a complete graph of any size.
The rank-1 approximation consists of .

TREE EXAMPLES

Computational results suggest that patterns emerge
also in some complex classes of graphs; these
examples support the conclusion that the rank-
1 approximation is related to vertex centrality.

Figure 2: A tree with n =
14 and s = 2; each vertex
has 2 branches.

Figure 3: Rank-1 ap-
proximation entries
for a tree with n =
200, s = 5

VERTEX CENTRALITY

Computational examples and theoretical results sug-
gest that the rank-1 approximation gives information
about the centrality of vertices within graphs. To for-
malize this notion, we find bounds for the difference
between the rank-1 approximation and the already
well-known eigenvector centrality.
Davis-Kahan sin(θ) Theorem[2]: Let Σ and Σ̂ be
symmetric n× n matrices with eigenvalues λ1 ≥ . . . ≥
λn and eigenvectors v1, v2, . . . , vn. Then for all j, pro-
vided that v̂Tj vj ≥ 0,

sin Θ (v̂, v) ≤
2
∣∣∣∣∣∣Σ̂− Σ

∣∣∣∣∣∣
op

min
(∣∣∣λ̂j−1 − λj∣∣∣ , ∣∣∣λ̂j+1 − λj

∣∣∣) (1)

In our case, call Σ̂ = ZZT and Σ = A. Recall that
since ZZT is the signless Laplacian matrix,

ZZT = A+D (2)

so D = Σ̂ − Σ. Under these equivalences, we have
v̂j = vj

(
ZZT

)
, the eigenvector corresponding to the

jth largest eigenvalue of ZZT , and vj = vj(A), the
eigenvector corresponding to the jth largest eigen-
value of A. Then, simplifying, we obtain

sin Θ
(
v1

(
ZZT

)
, v1 (A)

)
≤

2 ||D||op
|λ2 (ZZT )− λ1(A)|

(3)

Equation 3 shows that the angular difference between
v1

(
ZZT

)
(the rank-1 approximation) and v1(A) (the

eigenvector centrality measure) is bounded above. It
therefore confirms that the rank-1 approximation mea-
sures vertex centrality, and provides a result which
is only boundedly different from the already-known
measure given by the adjacency matrix. In addition,
equation 3 shows that the relationship depends on
the degrees of vertices in the underlying graphs; an
increase in vertex degrees leads to a less stringent
bound.


