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MOTIVATION COMPUTATIONAL RESULTS VERTEX CENTRALITY
e Matrix decomposition is a linear algebra tool Computational examples and theoretical results sug-
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Whlch has been useq to analyze many h1gh- Graph Dimensions Pseudocode (conditions for Z; — 1) & %’% gest that the ran1.< 1 approximation gives information
dimensional data sets in real-world applications § N about the centrality of vertices within graphs. To for-
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. at nrnT PTorr =t malize this notion, we find bounds for the difference
° G,faPhS can model diverse phegomena, from so- Cycle nXxn i=jori—1=j modn ol between the rank-1 approximation and the already

cial networks to computer architecture -~ an—l i o well-known eigenvector centrality.
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Using two results from linear algebra, we show that bipartite _ _ Sin© (0,v) < —— — (1)
the rank-1 approximation behaves well under the [n cyde} M I I H ( Aj—1 = Aj| 0 [Aj+1 T A D
Cartesian product of graphs. Suppose we have the Prism n X 3n A
graphs G and H with adjacency matrices Ag and Ay. M {n Cycle} I Eigure 1: Plots of rank-1 approximation entries for, respec- In our case, call ¥ = ZZT and ¥ = A. Recall that
We can make use of two facts from linear algebra: Tree nxn—1 j=i—1lori=(j+s—1)\s tively, a 100-vertex path, a 100-vertex cycle, a 10-vertex star, since ZZ" is the signless Laplacian matrix,

and a 7-vertex binary tree

Lemma 1 ([1]). Let A;, 1 < i < n represent the eigen- Table 1: Summary of classes of graphs for which incidence ZZ" =A+D (2)

values of G and 5, 1 < j < m represent the eigenvalues
of H. Then the eigenvalues of GLIH are given by \; + ;.

matrices were generated

so D = ¥ — ¥. Under these equivalences, we have
Vi = V; (Z ZT), the eigenvector corresponding to the
TREE EXAMPLES 7" largest eigenvalue of ZZ”, and v; = v;(A), the
eigenvector corresponding to the j'* largest eigen-
value of A. Then, simplifying, we obtain

SIMPLE CLASSES OF GRAPHS

We develop and then prove explicit results for the
rank-1 approximations of several simple classes of
graphs. In each case, the proof begins with the gen-

These lemmas, along with a reforumaltion of the carte- eral structure of the incidence matrix given in table 1,

Lemma 2 ([1]). If u; is the eigenvector of Aq corre-
sponding to \; and W, is the eigenvector of Ay corre-
sponding to y;, then v; ® W, is the eigenvector of Ao
corresponding to \; + (.

Computational results suggest that patterns emerge

also in some complex classes of graphs; these

examples support the conclusion that the rank- 211D
op

1 approximation is related to vertex centrality. sin© (v1 (ZZ7") ,v1 (A)) <

= e (227 - n(a)

sian product, yield the following result: then uses matrix manipulation techniques to obtain an Figure 2: A tree with n —

Th 1. Tet A~ D dV- — 777 gxphat Of TECUISIVE tormula for the determinant, and 14 and s = 2; each vertex Equation 3 shows that the angular difference between
eorem 1. Let Ag, Dg, and Yo = ZgZg repre- finally, uses this to proove the contents of the rank-1 has 2 branches v1 (ZZ7) (the rank-1 approximation) and v (A) (the

sent the adjacency, degree, and signless Laplacian ma- approximation. : 1 ) PP e 1b I

trices of G and H, respectively. Further, let \; (Yg) eigenvector centrality measure) is bounded above. It

therefore confirms that the rank-1 approximation mea-
sures vertex centrality, and provides a result which
Figure 3: Rank-1 ap- °* is only boundedly different from the already-known
proximation entries | measure given by the adjacency matrix. In addition,
for a tree with n = | equation 3 shows that the relationship depends on
200, s = 5 the degrees of vertices in the underlying graphs; an
] o o increase in vertex degrees leads to a less stringent
R bound.

and \; (Yr) be the eigenvalues of Yo and Yy with e Cycle, C,,: 4 is the largest eigenvalue of ZZ?* for
MYe)Z2... 2 N (Yg)and M\ (Yg) > ... =2 Ay (YR). a cycle of any size. The rank-1 approximation

Finally, let v; (Yg) and v; (Yy) be the eigenvectors cor- consists of 1.

responding to \; (Yqg) and \; (Y ), respectively. Then
Ye) ) Star, S,,_1: n is the largest eigenvalue of ZZ71

o The eigenvectors \iy; (Yoou) are all given by for a star of any size. The rank-1 approxi-

i (Yo )+Aj (Yr) for all combinations of 1 < ¢ < n mation consists of vectors of the form {n —
and 1 < 7 < m. 1,1,1,...,1,1}
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e The eigenvector corresponding to Ay, (Yoom) Complete graph, K,,: 2n—2 is the largest eigen-
Uiv; (Yoom ), is given by v; (Yg) ® U5 (Yr). value of ZZ™ for a complete graph of any size.
The rank-1 approximation consists of .

FUTURE RESEARCH
Both the computational work and theoretical results suggest several directions for future research. In particular:
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